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Some kudos first … 



A lot of this talk was inspired by 
the great posts of Adrian Colyer 


especially by his blog series "Out of the fire swamp”




see [Col], [Col2015a-c] 



Past 



RDBMS  ACID 



RDBMS 

•  “One database to rule them all”

•  Good all-rounder 
•  Rich schema 
•  Rich access patterns 

•  Designed for scarce resources 
•  Storage, CPU, Backup are expensive
•  Network is slow

•  Shared database 
•  Replication was expensive
•  Licenses were expensive
•  Operations were expensive

•  Easy integration model 

•  “Strange attractor”
•  Accidental central integration hub 
•  Data spaghetti



ACID 

•  Atomicity 
•  Consistency 
•  Isolation 
•  Durability

•  Great programming model 
•  No temporal inconsistencies 
•  No anomalies 
•  Easy to reason about

•  But reality often is different!
•  ACID does not necessarily mean 

“serializability”
•  Databases often run at lower 

consistency levels 
•  Anomalies happen 
•  Most developers are not aware of it



ANSI SQL

Anomalies 


•  Dirty write (P0):        w1[x]...w2[x]...(c1 or a1) 
•  Dirty read (P1):        w1[x]...r2[x]...(c1 or a1) 
•  Fuzzy read (P2):        r1[x]...w2[x]...(c1 or a1) 
•  Phantom read (P3):     r1[P]...w2[y in P]...(c1 or a1) 

Isolation levels 








See [Ber+1995] 

Dirty write Dirty read Fuzzy read Phantom read 
Read uncommitted  Not possible Possible Possible Possible

Read committed  Not possible Not possible Possible Possible

Repeatable read  Not possible Not possible Not possible Possible

Serializable  Not possible Not possible Not possible Not possible



Extended anomaly model 

•  Dirty write (P0): w1[x]...w2[x]...(c1 or a1) 
•  Dirty read (P1): w1[x]...r2[x]...(c1 or a1) 
•  Lost update (P4): r1[x]...w2[x]...w1[x]...c1 
•  Lost cursor u. (P4C): rc1[x]...w2[x]...wc1[x]...c1. 
•  Fuzzy read (P2): r1[x]...w2[x]...(c1 or a1) 
•  Phantom read (P3): r1[P]...w2[y in P]...(c1 or a1) 
•  Read skew (A5A): r1[x]...w2[x]...w2[y]...c2...r1[y]...(c1 or a1) 
•  Write skew (A5B): r1[x]...r2[y]...w1[y]...w2[x]...(c1 and c2 occur) 



see [Ber+1995] 



Extended isolation level model 















See [Ber+1995] 
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Default & maximum isolation levels 















See [Bai+2013a] 

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S
RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Table 1: Default and maximum isolation levels for ACID
and NewSQL databases as of January 2013.

Read Committed by default, while three “NewSQL” data
stores only offered Read Committed isolation.

In our investigation, we found that many databases
claiming strong guarantees often offered weaker seman-
tics. One store with an effective maximum of Read Com-
mitted isolation claimed to provide “strong consistency
(ACID)” [2], while another claiming “100% ACID” and
“fully support[ed] ACID transactions” uses consistent
read isolation [13]. Moreover, snapshot isolation is often
labeled as “serializability” [14]. We have accompanied
our bibliographic references with additional detail, but it
is clear that these “ACID” guarantees rarely meet serial-
izability’s goal of automatically protecting data integrity
as set out by the database literature. This is especially
surprising given that these databases’ “stronger” seman-
tics are often thought to substantially differentiate them
from their “NoSQL” peers [30, 56, 58].

These results—and several discussions with database
developers and architects—indicate that weak isolation
models are viable alternatives for many applications.
There are applications that either work correctly with
these models or else work well enough to accept the
resulting anomalies in exchange for their performance
benefits [45]. A key challenge is that, while the litera-
ture provides reasonable taxonomy of the models, it con-
siders them in either a single-node context [43] or ab-
stractly [20, 26]—it is unclear which models are achiev-
able with high availability and which are not. Indeed,
most weak isolation levels today are implemented in an
unavailable manner.

3 Highly Available Transactions
The large number and prevalence of “weak ACID” guar-
antees suggests that, although we cannot provide serial-
izability with high availability, providing weaker guar-
antees still provides users with a useful programming in-
terface. In this section, we show that two major mod-
els: Read Committed and ANSI SQL Repeatable Read
are achievable in a highly available environment. This
paves the way for broader theoretical and design stud-
ies of Highly Available Transactions: multi-operation,
multi-object guarantees achievable with high availability.
We will sketch algorithms solely as a proof-of-concept
for high availability; further engineering is required to
improve and evaluate their performance.
Read Committed We first consider Read Committed
isolation—a particularly widely used isolation model in
our survey. Read Committed is often the lowest level of
isolation provided in a database beyond “No Isolation.”
It requires that transactions do not read uncommitted data
items, which would result in “Dirty Reads phenomena
(i.e., ANSI P1 [22] and Adya G1{a,b,c} [20]). In the ex-
ample below, T3 should never see a = 1, and, if T2 aborts,
T3 will never see a = 3:

T1 : wx(1) wx(2)
T2 : wx(3)
T3 : rx(a)

Read Committed is a useful property because it ensures
that transactions will not read intermediate versions of a
given data item or read data from transactions that will
eventually be rolled back (and thus will never have “ex-
isted” in the database).

Read Committed also disallows “Dirty Write” phe-
nomena (Adya’s G0 [20]), so the database will “consis-
tently” order writes from concurrent transactions . Effec-
tively, the database induces a total order on transactions,
and the replicas of the database should apply writes in
this order. For example, if T1, T2 commit, T3 can eventu-
ally only read a = b = 1 or a = b = 2:

T1 : wx(1) wy(1)
T2 : wx(2) wy(2)
T3 : rx(a) ry(b)

This is useful because it effectively guarantees cross-
item convergence, or eventual consistency. “Dirty Write”
occurs when a database chooses different “winning”
transactions across simultaneously written keys.

We can implement Read Committed isolation with
high availability. If servers never reveal dirty data to
clients, then clients will never experience “Dirty Read”
phenomena. To ensure this, servers should only serve
data that they are sure has been committed. Servers
can explicitly buffer incoming writes until they receive a
commit message from clients. Alternatively, clients can

3
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•  The relational model is a good tradeoff
•  ACID makes a developer's life easy 
•  Yet, we often live (unknowingly) with less than serializability 



Present 



Cloud  µService 

NoSQL  BASE 



Cloud 

•  Self Service 
•  Elasticity 
•  Pay per use 

•  Great resource provisioning 
model 

•  Improves 
•  Autonomy 
•  Response time (lead time) 
•  Elasticity 
•  Cost efficiency (if done right) 

•  Trade-offs 
•  Scale out (“distributed hell”) 
•  Reduced availability of individual 

resources 



µService 

•  “Microservices are the mapping 
of organizational autonomy  
to software architecture”
•  Limited in scope
•  Self-dependent 
•  Loosely coupled 

•  Improves 
•  Autonomy 
•  Response time (if done right) 
•  Elasticity 

•  Trade-offs 
•  Higher design effort
•  Harder to operate
•  Distributed by default

•  Shared nothing 
•  No shared data 
•  No cross-service coordination 



NoSQL 

•  Extension of the storage 
solution space
•  Before NoSQL RDBMS and file 

system were predominant solutions 
•  NoSQL tries to fill the gaps 

•  New options 
•  Scalability (Volume & Velocity) 
•  Relaxed schema 
•  Availability in cloud environments 

•  Trade-offs 
•  CAP Theorem
•  Capabilities and limitations often 

poorly understood 



BASE 

•  Response to CAP theorem
•  “Relax temporal constraints in 

exchange for better availability”

•  Improves 
•  Scalability 
•  Availability

•  Trade-offs 
•  Temporal inconsistencies and all 

kinds of anomalies become visible
•  Very hard programming model 

•  Key readings
•  [Bre2000] introduced CAP and BASE
•  [Hel2007] “defined” boundaries of 

eventual consistency for years 
•  [Sha+2011] introduced CRDTs, 

improving convergence guarantees 
in eventually consistent systems 



About polyglot persistence and 
 

choosing the right database



The 8 dimensions of storage

•  Data Scalability (amount of data) 
•  Transaction Scalability (access rate) 

•  Latency (response time considering scalability) 
•  Read/Write Ratio (variability of r/w mix considering scalability) 

•  Schema Richness (variability of data model) 
•  Access Richness (variability of access patterns)

•  Consistency (data consistency guarantees) 

•  Fault Tolerance (ability to handle failures gracefully) 



Data scalability

Transaction scalability 

Schema richness 

Access richness R/W ratio
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Latency 
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NoSQL


Filling the blind spots of RDBMS and file systems 
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There is no “one size fits all”


and no drop-in replacement for your GORDB *







* good ol’ relational database



About eventual consistency 



NoSQL databases ... 

•  ... often do not guarantee any consistency out of the box

•  ... need to be configured properly for eventual consistency 

•  ... sometimes can provide higher consistency guarantees 

•  ... sometimes even ditch eventual consistency for better availability 
•  Minimum default consistency level to expect: single write/single entity/single node



You will experience temporary inconsistencies 


and anomalies at the application level 



Inconsistencies across replica sets 

Typical measures 

•  Read your writes 

•  Read from master 

•  Quorum based reads and writes 
•  Warning: This will not give you strict consistency! 



Siblings 

Typical measures 

•  Return all siblings, leave decision to client

•  Resolver (“Read repair”) 

•  Conflict-free Replicated Data Types (CRDT) 
•  Great stuff, but brain twister and does not work for all data types 



Performance hit for random access 


Usually no reliable and efficient secondary indices possible
•  Efficient and reliable access only via primary key access 



Typical measures 
•  Coarse-grained entities plus denormalized associations 

•  Multiple entity representations (one per access path) 

•  Results in new type of inconsistencies (across entities) 

•  Requires additional type of resolver (cross-entity resolver) 



Thus, really understand your consistency options ... 



... and be wary of vendor promises 



Wrap-up – Present






•  IT goes distributed (“scale out”) 
•  NoSQL fills the empty spots in the storage solution space
•  BASE transactions imply a very hard programming model 



Future 



So, can I only choose between “ACID” and “BASE”? 



Remember, that “ACID” does not
necessarily mean serializability? 



Repeatable 
read 

One-copy 
serializability 

Strong one-copy 
serializability 

Read 
committed 

regular 

Read 
uncommitted 

Cursor 
stability 

linearizable 

safe 

recency Item 
cut isolation 

Snapshot
isolation 

Monotonic
atomic view

Predicate
cut isolation  PRAM

Monotonic
reads 

Writes 
follow reads 

Monotonic
writes

Causal 
consistency 

Read your 
writes

see [Bai+2014a] 
BASE

ACID

Highly available
transaction model 

Sticky available 
transaction model 

Non-HA
transaction model 



There are a lot of consistency options to choose 
from between “ACID” and “BASE”



But … 



The old model assumed the work would be processed in exactly one 
order of execution. There was a default “single system of record” 
form of isolation provided by the classic database system running at 
the primary. This single history allows for a low-level READ and 
WRITE semantic that depends on “replaying history”. 


In this new [distributed] world, history cannot be exactly replayed 
and we must count on the ability to reorder the work. This means 
that we cannot completely know the accurate state of the system. It 
also means we must move the correctness and reordering semantics 
up from being based on system properties (i.e. READ and WRITE) to 
application based business operations. 



see [Hel+2009] 



It is no longer sufficient to understand and reason about distributed 
application consistency at the level of data store access. 



 Instead you need to understand and reason about distributed 
application consistency at the level of application operations. 



1.  You need to analyze the consistency requirements of the 
application carefully based on the business requirements. 

2.  The application (usually) needs to contribute explicitly to the 
implementation of the required consistency model. 



Current research explores the “frontiers”


•  "HAT, not CAP: Towards Highly Available Transactions” [Bai+2013b]  
HA causal consistency in distributed systems

•  "Scalable Atomic Visibility with RAMP Transactions" [Bai+2014b]  
New isolation level “atomic read” (stronger than MAV), implemented in HA fashion 

•  "Building Consistent Transactions with Inconsistent Replication" [Zha+2015]  
Low-latency distributed transactions by building a transactional application protocol on top of inconsistent replication 

•  "Putting Consistency Back into Eventual Consistency" [Bal+2015]  
Explicit application-level consistency using application-defined invariants on top of eventual consistent data stores 

•  "Implementing Linearizability at Large Scale and Low Latency" [Lee+2015]  
Implementing fast and scalable exactly-once semantics, enabling linearizable operations on top of it

•  "Spanner: Google’s Globally-Distributed Database" [Cor+2012]  
“Case study” for a very different approach to scalable serializability by using hardware to solve the “time problem”

•  "High-Performance ACID via Modular Concurrency Control" [Xie+2015]  
Speedup of traditional ACID transactions by grouping transactions into independent sets that can be handled concurrently 



And there is more to come ... 



Current memory and storage trends 


•  Terabyte memory computers  
Full in-memory computing of large data sets 

•  Storage Class Memory (SCM) / Non-Volatile RAM (NVRAM)  
Many technologies under development filling the gap between RAM and SSD

•  Remote Direct Memory Access (RDMA)  
Accessing a remote machine’s RAM bypassing the CPU, allowing very low-latency remote 
memory access (around 2 order of magnitude faster than SSD access) 



Keeping the CPU busy is no longer the core challenge

New system architectures and programming models will emerge

New consistency options not available today may also emerge


see [Coc2016], [Col2016] 



Wrap-up – Future





•  Lots of options to balance consistency constraints and intricacy of 

the programming model 
•  Higher consistency guarantees than “plain BASE” in distributed HA 

databases may become available in the near future
•  Most of them will require effort on the application level 



Recommendations 



Across service/storage boundaries 


•  Don't coordinate writes across service/storage boundaries 
•  Usually your design is wrong (entity-driven instead of behavior-driven) 
•  Remember: DDD is about domains, not entities! Domains include behavior 
•  The activation path of a use case should be as short as possible

•  Use a relaxed temporal constraint model plus reconciliation 
•  Consider applying the concepts of promise theory [Bur2005] and memory, guesses 

and apologies [Hel+2009] 



Within service/storage boundaries 


•  Thoroughly analyze your storage requirements (8 dimensions) 
•  Thoroughly analyze your consistency requirements 

•  Be wary of serializability (database reality is different)
•  Don't think consistency is solely a data store issue

•  Don't distribute data or relax consistency without an explicit need 
•  Choose wisely – and have your developers in mind 



Wrap-up 

•  Past: RDBMS and ACID

•  Great programming model 

•  ACID does not necessarily mean serializability 

•  Present: Cloud, µServices, NoSQL & BASE
•  More options, more challenges 

•  Very hard programming model 

•  Future: Exploring the boundaries 
•  Many options between ACID and BASE

•  Often requires awareness on the application level 

•  Know your options! 



There is no “one-size-fits-all” solution 
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