
Real-world consistency explained
or the challenges of modern persistence

Uwe Friedrichsen (codecentric AG) – Velocity – London, 19. October 2017

@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | https://www.slideshare.net/ufried | https://medium.com/@ufried

Some kudos first …

A lot of this talk was inspired by
the great posts of Adrian Colyer

especially by his blog series "Out of the fire swamp”

see [Col], [Col2015a-c]

Past

RDBMS ACID

RDBMS

•  “One database to rule them all”

•  Good all-rounder
•  Rich schema
•  Rich access patterns

•  Designed for scarce resources
•  Storage, CPU, Backup are expensive
•  Network is slow

•  Shared database
•  Replication was expensive
•  Licenses were expensive
•  Operations were expensive

•  Easy integration model

•  “Strange attractor”
•  Accidental central integration hub
•  Data spaghetti

ACID

•  Atomicity
•  Consistency
•  Isolation
•  Durability

•  Great programming model
•  No temporal inconsistencies
•  No anomalies
•  Easy to reason about

•  But reality often is different!
•  ACID does not necessarily mean

“serializability”
•  Databases often run at lower

consistency levels
•  Anomalies happen
•  Most developers are not aware of it

ANSI SQL

Anomalies

•  Dirty write (P0): w1[x]...w2[x]...(c1 or a1)
•  Dirty read (P1): w1[x]...r2[x]...(c1 or a1)
•  Fuzzy read (P2): r1[x]...w2[x]...(c1 or a1)
•  Phantom read (P3): r1[P]...w2[y in P]...(c1 or a1)

Isolation levels

See [Ber+1995]

Dirty write Dirty read Fuzzy read Phantom read
Read uncommitted Not possible Possible Possible Possible

Read committed Not possible Not possible Possible Possible

Repeatable read Not possible Not possible Not possible Possible

Serializable Not possible Not possible Not possible Not possible

Extended anomaly model

•  Dirty write (P0): w1[x]...w2[x]...(c1 or a1)
•  Dirty read (P1): w1[x]...r2[x]...(c1 or a1)
•  Lost update (P4): r1[x]...w2[x]...w1[x]...c1
•  Lost cursor u. (P4C): rc1[x]...w2[x]...wc1[x]...c1.
•  Fuzzy read (P2): r1[x]...w2[x]...(c1 or a1)
•  Phantom read (P3): r1[P]...w2[y in P]...(c1 or a1)
•  Read skew (A5A): r1[x]...w2[x]...w2[y]...c2...r1[y]...(c1 or a1)
•  Write skew (A5B): r1[x]...r2[y]...w1[y]...w2[x]...(c1 and c2 occur)

see [Ber+1995]

Extended isolation level model

See [Ber+1995]

Isolation level Dirty
write

Dirty
read

Cursor
lost

update

Lost
update

Fuzzy
read

Phantom
read

Read
skew

Write
skew

Read
uncommitted

Not
possible Possible Possible Possible Possible Possible Possible Possible

Read
committed

Not
possible

Not
possible Possible Possible Possible Possible Possible Possible

Cursor
stability

Not
possible

Not
possible

Not
possible

Sometimes
possible

Sometimes
possible Possible Possible Sometimes

possible

Repeatable
read

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible Possible Not

possible
Not

possible

Snapshot

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Sometimes
possible

Not
possible Possible

Serializable

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Not
possible

Default & maximum isolation levels

See [Bai+2013a]

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S
RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Table 1: Default and maximum isolation levels for ACID
and NewSQL databases as of January 2013.

Read Committed by default, while three “NewSQL” data
stores only offered Read Committed isolation.

In our investigation, we found that many databases
claiming strong guarantees often offered weaker seman-
tics. One store with an effective maximum of Read Com-
mitted isolation claimed to provide “strong consistency
(ACID)” [2], while another claiming “100% ACID” and
“fully support[ed] ACID transactions” uses consistent
read isolation [13]. Moreover, snapshot isolation is often
labeled as “serializability” [14]. We have accompanied
our bibliographic references with additional detail, but it
is clear that these “ACID” guarantees rarely meet serial-
izability’s goal of automatically protecting data integrity
as set out by the database literature. This is especially
surprising given that these databases’ “stronger” seman-
tics are often thought to substantially differentiate them
from their “NoSQL” peers [30, 56, 58].

These results—and several discussions with database
developers and architects—indicate that weak isolation
models are viable alternatives for many applications.
There are applications that either work correctly with
these models or else work well enough to accept the
resulting anomalies in exchange for their performance
benefits [45]. A key challenge is that, while the litera-
ture provides reasonable taxonomy of the models, it con-
siders them in either a single-node context [43] or ab-
stractly [20, 26]—it is unclear which models are achiev-
able with high availability and which are not. Indeed,
most weak isolation levels today are implemented in an
unavailable manner.

3 Highly Available Transactions
The large number and prevalence of “weak ACID” guar-
antees suggests that, although we cannot provide serial-
izability with high availability, providing weaker guar-
antees still provides users with a useful programming in-
terface. In this section, we show that two major mod-
els: Read Committed and ANSI SQL Repeatable Read
are achievable in a highly available environment. This
paves the way for broader theoretical and design stud-
ies of Highly Available Transactions: multi-operation,
multi-object guarantees achievable with high availability.
We will sketch algorithms solely as a proof-of-concept
for high availability; further engineering is required to
improve and evaluate their performance.
Read Committed We first consider Read Committed
isolation—a particularly widely used isolation model in
our survey. Read Committed is often the lowest level of
isolation provided in a database beyond “No Isolation.”
It requires that transactions do not read uncommitted data
items, which would result in “Dirty Reads phenomena
(i.e., ANSI P1 [22] and Adya G1{a,b,c} [20]). In the ex-
ample below, T3 should never see a = 1, and, if T2 aborts,
T3 will never see a = 3:

T1 : wx(1) wx(2)
T2 : wx(3)
T3 : rx(a)

Read Committed is a useful property because it ensures
that transactions will not read intermediate versions of a
given data item or read data from transactions that will
eventually be rolled back (and thus will never have “ex-
isted” in the database).

Read Committed also disallows “Dirty Write” phe-
nomena (Adya’s G0 [20]), so the database will “consis-
tently” order writes from concurrent transactions . Effec-
tively, the database induces a total order on transactions,
and the replicas of the database should apply writes in
this order. For example, if T1, T2 commit, T3 can eventu-
ally only read a = b = 1 or a = b = 2:

T1 : wx(1) wy(1)
T2 : wx(2) wy(2)
T3 : rx(a) ry(b)

This is useful because it effectively guarantees cross-
item convergence, or eventual consistency. “Dirty Write”
occurs when a database chooses different “winning”
transactions across simultaneously written keys.

We can implement Read Committed isolation with
high availability. If servers never reveal dirty data to
clients, then clients will never experience “Dirty Read”
phenomena. To ensure this, servers should only serve
data that they are sure has been committed. Servers
can explicitly buffer incoming writes until they receive a
commit message from clients. Alternatively, clients can

3

Wrap-up – Past

•  The relational model is a good tradeoff
•  ACID makes a developer's life easy
•  Yet, we often live (unknowingly) with less than serializability

Present

Cloud µService

NoSQL BASE

Cloud

•  Self Service
•  Elasticity
•  Pay per use

•  Great resource provisioning
model

•  Improves
•  Autonomy
•  Response time (lead time)
•  Elasticity
•  Cost efficiency (if done right)

•  Trade-offs
•  Scale out (“distributed hell”)
•  Reduced availability of individual

resources

µService

•  “Microservices are the mapping
of organizational autonomy  
to software architecture”
•  Limited in scope
•  Self-dependent
•  Loosely coupled

•  Improves
•  Autonomy
•  Response time (if done right)
•  Elasticity

•  Trade-offs
•  Higher design effort
•  Harder to operate
•  Distributed by default

•  Shared nothing
•  No shared data
•  No cross-service coordination

NoSQL

•  Extension of the storage
solution space
•  Before NoSQL RDBMS and file

system were predominant solutions
•  NoSQL tries to fill the gaps

•  New options
•  Scalability (Volume & Velocity)
•  Relaxed schema
•  Availability in cloud environments

•  Trade-offs
•  CAP Theorem
•  Capabilities and limitations often

poorly understood

BASE

•  Response to CAP theorem
•  “Relax temporal constraints in

exchange for better availability”

•  Improves
•  Scalability
•  Availability

•  Trade-offs
•  Temporal inconsistencies and all

kinds of anomalies become visible
•  Very hard programming model

•  Key readings
•  [Bre2000] introduced CAP and BASE
•  [Hel2007] “defined” boundaries of

eventual consistency for years
•  [Sha+2011] introduced CRDTs,

improving convergence guarantees
in eventually consistent systems

About polyglot persistence and
 

choosing the right database

The 8 dimensions of storage

•  Data Scalability (amount of data)
•  Transaction Scalability (access rate)

•  Latency (response time considering scalability)
•  Read/Write Ratio (variability of r/w mix considering scalability)

•  Schema Richness (variability of data model)
•  Access Richness (variability of access patterns)

•  Consistency (data consistency guarantees)

•  Fault Tolerance (ability to handle failures gracefully)

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

Re
la

tio
na

l d
at

ab
as

e

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

Fi
le

 s
ys

te
m

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S
&

 fi
le

 s
ys

te
m

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S
&

 fi
le

 s
ys

te
m

NoSQL

Filling the blind spots of RDBMS and file systems

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

Ca
ss

an
dr

a

Data scalability

Transaction scalability

Schema richness

Access richness R/W ratio

Consistency

Fault tolerance

Latency

RD
BM

S-
FS

-C
as

sa
nd

ra

There is no “one size fits all”

and no drop-in replacement for your GORDB *

* good ol’ relational database

About eventual consistency

NoSQL databases ...

•  ... often do not guarantee any consistency out of the box

•  ... need to be configured properly for eventual consistency

•  ... sometimes can provide higher consistency guarantees

•  ... sometimes even ditch eventual consistency for better availability
•  Minimum default consistency level to expect: single write/single entity/single node

You will experience temporary inconsistencies

and anomalies at the application level

Inconsistencies across replica sets

Typical measures

•  Read your writes

•  Read from master

•  Quorum based reads and writes
•  Warning: This will not give you strict consistency!

Siblings

Typical measures

•  Return all siblings, leave decision to client

•  Resolver (“Read repair”)

•  Conflict-free Replicated Data Types (CRDT)
•  Great stuff, but brain twister and does not work for all data types

Performance hit for random access

Usually no reliable and efficient secondary indices possible
•  Efficient and reliable access only via primary key access

Typical measures
•  Coarse-grained entities plus denormalized associations

•  Multiple entity representations (one per access path)

•  Results in new type of inconsistencies (across entities)

•  Requires additional type of resolver (cross-entity resolver)

Thus, really understand your consistency options ...

... and be wary of vendor promises

Wrap-up – Present

•  IT goes distributed (“scale out”)
•  NoSQL fills the empty spots in the storage solution space
•  BASE transactions imply a very hard programming model

Future

So, can I only choose between “ACID” and “BASE”?

Remember, that “ACID” does not
necessarily mean serializability?

Repeatable
read

One-copy
serializability

Strong one-copy
serializability

Read
committed

regular

Read
uncommitted

Cursor
stability

linearizable

safe

recency Item
cut isolation

Snapshot
isolation

Monotonic
atomic view

Predicate
cut isolation PRAM

Monotonic
reads

Writes
follow reads

Monotonic
writes

Causal
consistency

Read your
writes

see [Bai+2014a]
BASE

ACID

Highly available
transaction model

Sticky available
transaction model

Non-HA
transaction model

There are a lot of consistency options to choose
from between “ACID” and “BASE”

But …

The old model assumed the work would be processed in exactly one
order of execution. There was a default “single system of record”
form of isolation provided by the classic database system running at
the primary. This single history allows for a low-level READ and
WRITE semantic that depends on “replaying history”.

In this new [distributed] world, history cannot be exactly replayed
and we must count on the ability to reorder the work. This means
that we cannot completely know the accurate state of the system. It
also means we must move the correctness and reordering semantics
up from being based on system properties (i.e. READ and WRITE) to
application based business operations.

see [Hel+2009]

It is no longer sufficient to understand and reason about distributed
application consistency at the level of data store access.

 Instead you need to understand and reason about distributed
application consistency at the level of application operations.

1.  You need to analyze the consistency requirements of the
application carefully based on the business requirements.

2.  The application (usually) needs to contribute explicitly to the
implementation of the required consistency model.

Current research explores the “frontiers”

•  "HAT, not CAP: Towards Highly Available Transactions” [Bai+2013b]  
HA causal consistency in distributed systems

•  "Scalable Atomic Visibility with RAMP Transactions" [Bai+2014b]  
New isolation level “atomic read” (stronger than MAV), implemented in HA fashion

•  "Building Consistent Transactions with Inconsistent Replication" [Zha+2015]  
Low-latency distributed transactions by building a transactional application protocol on top of inconsistent replication

•  "Putting Consistency Back into Eventual Consistency" [Bal+2015]  
Explicit application-level consistency using application-defined invariants on top of eventual consistent data stores

•  "Implementing Linearizability at Large Scale and Low Latency" [Lee+2015]  
Implementing fast and scalable exactly-once semantics, enabling linearizable operations on top of it

•  "Spanner: Google’s Globally-Distributed Database" [Cor+2012]  
“Case study” for a very different approach to scalable serializability by using hardware to solve the “time problem”

•  "High-Performance ACID via Modular Concurrency Control" [Xie+2015]  
Speedup of traditional ACID transactions by grouping transactions into independent sets that can be handled concurrently

And there is more to come ...

Current memory and storage trends

•  Terabyte memory computers  
Full in-memory computing of large data sets

•  Storage Class Memory (SCM) / Non-Volatile RAM (NVRAM)  
Many technologies under development filling the gap between RAM and SSD

•  Remote Direct Memory Access (RDMA)  
Accessing a remote machine’s RAM bypassing the CPU, allowing very low-latency remote
memory access (around 2 order of magnitude faster than SSD access)

Keeping the CPU busy is no longer the core challenge

New system architectures and programming models will emerge

New consistency options not available today may also emerge

see [Coc2016], [Col2016]

Wrap-up – Future

•  Lots of options to balance consistency constraints and intricacy of

the programming model
•  Higher consistency guarantees than “plain BASE” in distributed HA

databases may become available in the near future
•  Most of them will require effort on the application level

Recommendations

Across service/storage boundaries

•  Don't coordinate writes across service/storage boundaries
•  Usually your design is wrong (entity-driven instead of behavior-driven)
•  Remember: DDD is about domains, not entities! Domains include behavior
•  The activation path of a use case should be as short as possible

•  Use a relaxed temporal constraint model plus reconciliation
•  Consider applying the concepts of promise theory [Bur2005] and memory, guesses

and apologies [Hel+2009]

Within service/storage boundaries

•  Thoroughly analyze your storage requirements (8 dimensions)
•  Thoroughly analyze your consistency requirements

•  Be wary of serializability (database reality is different)
•  Don't think consistency is solely a data store issue

•  Don't distribute data or relax consistency without an explicit need
•  Choose wisely – and have your developers in mind

Wrap-up

•  Past: RDBMS and ACID

•  Great programming model

•  ACID does not necessarily mean serializability

•  Present: Cloud, µServices, NoSQL & BASE
•  More options, more challenges

•  Very hard programming model

•  Future: Exploring the boundaries
•  Many options between ACID and BASE

•  Often requires awareness on the application level

•  Know your options!

There is no “one-size-fits-all” solution

References

[Bai+2013a] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,  
 "HAT, not CAP: Towards Highly Available Transactions", HotOS 2013

[Bai+2013b] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,  
 "Bolt-on Causal Consistency", SIGMOD 2013

[Bai+2014a] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,
 Ion Stoica, "Highly Available Transactions: Virtues and Limitations", VLDB 2014

[Bai+2014b] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,
 "Scalable Atomic Visibility with RAMP Transactions", SIGMOD 2014

[Bai+2015] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
 Ion Stoica, "Coordination Avoidance in Database Systems", VLDB 2015

[Bal+2015] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica,
 Mahsa Najafzadeh, Marc Shapiro, "Putting Consistency Back into Eventual
 Consistency", EuroSys 2015

[Ber+1995] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
 Patrick O'Neil, "A Critique of ANSI SQL Isolation Levels", Microsoft Research,
 Technical Report MSR-TR-95-51, June 1995

References

[Bre2000] Eric A. Brewer, "Towards Robust Distributed Systems", PODC 2000

[Bur2005] Mark Burgess, "An Approach to Understanding Policy Based on Autonomy and
 Voluntary Cooperation", DSOM 2005

[Coc2015] Adrian Cockcroft, "Innovation and Architecture",  
 http://de.slideshare.net/adriancockcroft/innovation-and-architecture, S. 122-125

[Col] Adrian Colyer, "the morning paper", http://blog.acolyer.org

[Col2015a-c] Adrian Colyer, "Out of the Fire Swamp”, Parts I-III,
 http://blog.acolyer.org/2015/09/08/out-of-the-fire-swamp-part-i-the-data-crisis/
 http://blog.acolyer.org/2015/09/09/out-of-the-fire-swamp-part-ii-peering-into-the-mist/
 http://blog.acolyer.org/2015/09/10/out-of-the-fire-swamp-part-iii-go-with-the-flow/

[Col2016] Adrian Colyer, "All change please",  
 http://blog.acolyer.org/2016/01/22/all-change-please/

[Cor+2012] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
 Christopher Frost, JJ Furman, et al.,
 "Spanner: Google’s Globally-Distributed Database", OSDI 2012

References

[Hel2007] Pat Helland, "Life beyond Distributed Transactions: an Apostate’s Opinion",
 CIDR 2007

[Hel+2009] Pat Helland, Dave Campell, "Building on Quicksand", CIDR 2009

[Lee+2015] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, John Ousterhout,
 "Implementing Linearizability at Large Scale and Low Latency", SOSP 2015

[Sha+2011] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski,
 "A comprehensive study of Convergent and Commutative Replicated Data
 Types", Inria Research report, 2011

[Xie+2015] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, Yang Wang,
 "High-Performance ACID via Modular Concurrency Control", SOSP 2015

[Zha+2015], Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
 Dan R. K. Ports, "Building Consistent Transactions with Inconsistent Replication",
 SOSP 2015

@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | https://www.slideshare.net/ufried | https://medium.com/@ufried

